If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-50=24
We move all terms to the left:
16t^2-50-(24)=0
We add all the numbers together, and all the variables
16t^2-74=0
a = 16; b = 0; c = -74;
Δ = b2-4ac
Δ = 02-4·16·(-74)
Δ = 4736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4736}=\sqrt{64*74}=\sqrt{64}*\sqrt{74}=8\sqrt{74}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{74}}{2*16}=\frac{0-8\sqrt{74}}{32} =-\frac{8\sqrt{74}}{32} =-\frac{\sqrt{74}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{74}}{2*16}=\frac{0+8\sqrt{74}}{32} =\frac{8\sqrt{74}}{32} =\frac{\sqrt{74}}{4} $
| 14/9=-7v | | 10-23=29-3x | | 13n-16+17n+12+6n=360 | | x/5+17=18 | | 4(u-65)=56 | | 18w=63+9w | | 9(b+62)=99 | | -16=4/9v | | 30=4+x/2 | | 3c+11=83 | | 4x+24=123 | | 1/3x-12=3(x-8) | | r-64/4=5 | | 10b+4=74 | | 3n-40=29 | | m/9+20=22 | | 9=g/3+8 | | -3v/2=-15 | | 4=2(s-97) | | f(6)=-0.4(6)+16.3 | | r/9+25=29 | | -1/2y+1/6=1/3 | | 5=u/3+2 | | 60z+50-90z=-37z+49 | | x-5/x+3=1/3 | | -4=80-2n | | p/4+13=15 | | 48=12x-6x | | 3x/7=12/49 | | -4/3v=20 | | f(4)=-0.4(4)+16.3 | | 3(x–5)=2x-5 |